

Molecular Crystals and Liquid Crystals

ISSN: 1542-1406 (Print) 1563-5287 (Online) Journal homepage: http://www.tandfonline.com/loi/gmcl20

X-ray crystal structural analysis of 1,2-dihydro-3-methylpyrazole-5-one

Wei Gao

To cite this article: Wei Gao (2016) X-ray crystal structural analysis of 1,2-dihydro-3-methylpyrazole-5-one, Molecular Crystals and Liquid Crystals, 625:1, 221-224, DOI: 10.1080/15421406.2015.1069467

To link to this article: http://dx.doi.org/10.1080/15421406.2015.1069467

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gmcl20

X-ray crystal structural analysis of 1,2-dihydro-3-methylpyrazole-5-one

Wei Gao

School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, P.R. China

ABSTRACT

The title compound 1,2-dihydro-3-methylpyrazole-5-one was determined by X-ray crystal structural analysis. The crystals are monoclinic, with space group P2(1)/n with a = 7.968(7), b = 6.502(6), c = 9.986(10) Å, $\alpha = 90^{\circ}$, $\beta = 109.995(15)^{\circ}$, $\gamma = 90^{\circ}$, $V = 486.1(8) \text{ Å}^3$, Z = 4, F(000) = 208, D_c = 1.340 g cm⁻³, μ = 0.100 mm⁻¹, and the final R = 0.0373 and wR = 0.0961. A total of 4776 reflections were collected, of which 1148 were independent ($R_{int} = 0.0589$). In the crystal packing diagram, intermolecular N-H···O hydrogen bonds and π – π stacking interactions stabilize the solid state of the title compound.

KEYWORDS

Crystal structure; heterocyclic compound; pyrazole

Introduction

Recently, heterocyclic compounds comprising nitrogen, because of their wide applications in industry, medicine, and agriculture, have attracted much interest of synthetic chemists [1-8]. In continuation of our previous study on heterocyclic compounds [9–11], a heterocyclic compound containing pyrazole unit was prepared and its structure was confirmed by X-ray crystal structural analysis. In this contribution, we describe the X-ray crystal structural analysis of 1,2-dihydro-3-methylpyrazole-5-one.

Experimental

Crystal structure determination

The crystal of the title compound with dimensions of $0.20 \times 0.18 \times 0.10$ mm was mounted on a Rigaku Saturn CCD area detector diffractometer with a graphite–monochromated MoKα radiation ($\lambda = 0.71073 \text{ Å}$) by using Φ and scan modes at 113(2) K in the range of 3.81° \leq $\theta \le 27.83^{\circ}$. The crystal belongs to monoclinic system with space group P2(1)/n and crystal parameters of a = 7.968(7) Å, b = 6.502(6) Å, c = 9.986(10) Å, $\alpha = 90^{\circ}$, $\beta = 109.995(15)^{\circ}$, $\gamma = 90^{\circ}$, $V = 486.1(8) \text{ A}^3$, $D_c = 1.340 \text{ g cm}^{-3}$, absorption coefficient $\mu = 0.100 \text{ mm}^{-1}$, and Z = 4. A summary of crystal data is presented in Table 1.

The structure was solved by direct methods with SHELXS-97 [12], and refined by the fullmatrix least squares method on F^2 data using SHELXL-97 [13]. The empirical absorption corrections were applied to all intensity data. H atom of N-H was initially located in a difference

Table 1. Crystal data and structure refinement.

Empirical formula	$C_4H_6N_2O$
Formula weight	98.11
Crystal system	Monoclinic
Unit cell dimensions	
a (Å)	7.968(7)
b (Å)	6.502(6)
c (Å)	9.986(10)
Unit cell angles	
α	90°
β	109.995(15)
γ	90
Volume (Å ³)	486.1(8)
Z	4
Temperature (K)	113(2)
Space group	<i>P</i> 2(1)/n
Wavelength (Å)	0.71073
Calculated density (g cm ⁻³)	1.340
Absorption coefficient (mm ⁻¹)	0.100
F(000)	208
Crystal size	$0.20 \times 0.18 \times 0.10 \text{mm}$
θ range for data collection	3.81–27.83°
Reflections collected	4776
Independent reflections	1148 $[R_{(int)} = 0.0589]$
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0373, wR_2 = 0.0961$

Fourier map and was refined with the restraint Uiso(H) = 1.2 Ueq(N). Other H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.93-0.97 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(Cmethyl). The final full-matrix least squares refinement gave R = 0.0373 and wR = 0.0961.

Results and discussion

The title compound 1,2-dihydro-3-methylpyrazole-5-one has been confirmed by single crystal X-ray diffraction analysis. The selected bond lengths and bond angles are listed in Table 2. The structure was solved by direct methods. Anisotropic displacement parameters were applied to all non-hydrogen atoms in full-matrix least-square refinements based on F^2 . The hydrogen atoms were set in calculated positions with a common fixed isotropic thermal parameter.

The molecular structure and the packing view of the title compound are displayed in Figs. 1 and 2, respectively. The title compound crystallizes in monoclinic space group P2(1)/n with four molecules in the unit cell and one molecule in the asymmetric unit. As shown in Fig. 1, the molecular structure comprises a five-membered ring with a methyl group.

Table 2. Selected bond lengths (Å) and bond angles (°).

Bond lengths			
O(1)-C(1)	1.2888(15)	N(1)-C(1)	1.3584(16)
N(1)-N(2)	1.3661(15)	N(2)-C(3)	1.3366(16)
C(1)-C(2)	1.4070(18)	C(2)-C(3)	1.3789(17)
Bond angles			
C(1)-N(1)-N(2)	109.24(9)	C(3)-N(2)-N(1)	108.63(10)
O(1)-C(1)-N(1)	121.31(10)	O(1)-C(1)-C(2)	132.33(10)
N(1)-C(1)-C(2)	106.35(10)	C(3)-C(2)-C(1)	107.11(10)
N(2)-C(3)-C(2)	108.64(11)	N(2)-C(3)-C(4)	120.32(10)

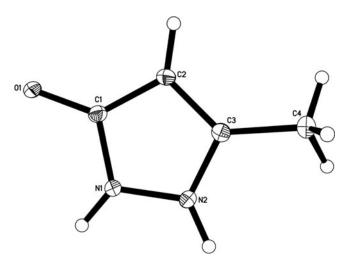
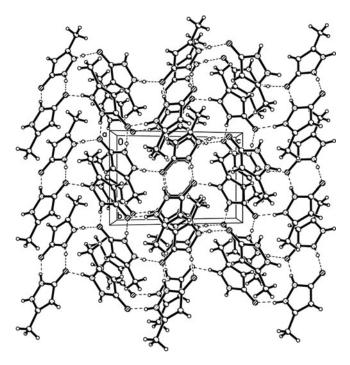



Figure 1. Molecular structure of the title compound.

The H atom of the hydroxy group is transferred to the N atom of pyrazole to form amide group. The five-membered ring C1C2C3N1N2 is almost coplanar with the mean deviation of 0.0059 Å. The bond distances [O(1)-C(1)=1.2888(15) Å, N(1)-C(1)=1.3584(16) Å, N(1)-N(2)=1.3661(15) Å, N(2)-C(3)=1.3366(16) Å, C(1)-C(2)=1.4070(18) Å, C(2)-C(3)=1.3789(17) Å, and C(3)-C(4)=1.4893(18) Å] and bond angles $[C(1)-N(1)-N(2)=109.24(9)^{\circ}, C(3)-N(2)-N(1)=108.63(10)^{\circ}, O(1)-C(1)-N(1)=121.31(10)^{\circ}, O(1)-C(1)-C(2)=132.33(10)^{\circ}, N(1)-C(1)-C(2)=106.35(10)^{\circ}, C(3)-C(2)-C(1)=107.11(10)^{\circ}, N(2)-C(3)-C(2)=108.64(11)^{\circ}, N(2)-C(3)-C(4)=120.32(10)^{\circ}, and C(2)-C(3)-C(4)=131.03(10)^{\circ}]$ are similar to other compounds [14-20].

Figure 2. The crystal packing view of the title compound.

As shown in Fig. 2, the crystal packing diagram of the title compound shows that intermolecular N-H···O hydrogen bonds exist between NH of pyrazole and O atom of carbonyl. Furthermore, face-to-face $\pi - \pi$ stacking interactions are also observed between pyrazole rings. These interactions stabilize the solid state of the title compound.

Conclusions

In summary, the title compound 1,2-dihydro-3-methylpyrazole-5-one has been structurally characterized by X-ray crystallography.

Funding

We gratefully acknowledge financial support from the Doctoral Research Fund of Henan University of Traditional Chinese Medicine.

References

- [1] Zhao, P. H., & Liu, Y. F. (2013). Mol. Cryst. Lig. Cryst., 587, 113.
- [2] Liu, X. H., Chen, P. Q., Wang, B. L., Li, Y. H., Wang, S. H., & Li, Z. M. (2007). Bioorg. Med. Chem. Lett., 17, 3784.
- [3] Su, N. N., Li, Y., Yu, S. J., Zhang, X., Liu, X. H., & Zhao, W. G. (2013). Res. Chem. Intermed., 39,
- [4] Liu, X. F., Yu, X. Y., & Jiang, S. L. (2011). Acta Crystallogr., E67, O1641.
- [5] Liu, X. H., Sun, Z. H, Yang, M. Y, Tan, C. X, Weng, J. Q, et al. (2014). Chem. Biol. Drug Des., 84, 342.
- [6] Liu, X. H., Tan, C. X., & Weng, J. Q. (2011). Phosphorus Sulfur Silicon Relat. Elem., 186, 552.
- [7] Liu, X. H, Weng, J. Q, Wang, B. L, Li, Y. H, Tan, C. X, & Li, Z. M. (2014). Res. Chem. Intermed., 40, 2605.
- [8] Liu, X. H., Tan, C. X., & Weng, J. Q. (2011). Phosphorus Sulfur Silicon Relat. Elem., 186, 558.
- [9] Gao, W., Guo, F. P., & Yang, J. (2014). Asian J. Chem., 26, 2083.
- [10] Gao, W. (2015). Mol. Cryst. Liq. Cryst., doi:10.1080/15421406.2014.950469.
- [11] Gao, W. (2015). Mol. Cryst. Liq. Cryst., doi:10.1080/15421406.2014.956402.
- [12] Sheldrick, G. M. (1997). SHELXS97, A Program for Crystal Structure Solution, University of Göttingen: Göttingen, Germany.
- [13] Sheldrick, G. M. (1997). SHELXL97, A Program for Crystal Structure Refinement, University of Göttingen: Göttingen, Germany.
- [14] Liu, X. F., & Gao, H. Q. (2013). Polyhedron, 65, 1.
- [15] Liu, X. F. (2014). Polyhedron, 72, 66.
- [16] Zhao, P. H., Liu, S. N. & Liu, Y. Q. (2014). J. Coord. Chem., 67, 766.
- [17] Li, C. G., Li, Y. F., Shang, J. Y., & Lou, T. J. (2014). Transit. Met. Chem., 39, 373.
- [18] Sun, N. B., Liu, X. H., Weng, J. Q., & Tan, C. X. (2013). J. Chem. Soc. Pak., 35, 499.
- [19] Liu, X. F., & Li, X. (2014). J. Coord. Chem., 67, 3226.
- [20] Liu, X. F., Li, X., & Yan, J. (2015). Polyhedron, 85, 482.